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A multigrid method is presented for cell-centered discretizations of elliptic partial differen- 
tial equations. The method works both for smooth and strongly discontinuous coefhcients, 
even though, in contrast with earlier works, the prolongation and restriction operators do not 
depend on the equation. 0 1988 Academic press, IIIC. 

1. INTRODUCTION 

The multigrid method to be presented will be developed for the equation 

--g-(ugg--ga$ji 

(X,Y)EQ=(o, 1)x(0,1), 4lao= g> a > 0. 

The coefficient a(x, v) is not continuous everywhere. This precludes application of 
standard multigrid methods. Alcouffe et al. [l], Dendy [3], Kettler and Meijerink 
[4] (see also Kettler [7]) have developed special multigrid methods that work well 
for the problem considered here. In these methods the prolongation and restricton 
operators depend on the discrete approximation to (1.1). Until now, theoretical 
justification is lacking and seems hard to come by. In the following, a rn~ltig~i~ 
method is proposed for (1.1) that also works in practice, is simpler, and can be 
justified theoretically. The difference with the methods just mentioned is that 
prolongation and restriction are not problem-dependent and that grid coarsening is 
done cell-wise rather than point-wise. What this means will be made clear in the 
sequel. 

2. FINITE VOLUME DISCRETIZATION 

For convenience, the mesh size will be h in both directions. The domain Q is 
subdivided in finite volumes or cells, which are squares of size h, with centers at the 
points 

sz,=((X,y):x=xi=(i-~)h,y=yj=(j--)h;i,j=1,2,...,n;h=l/n). (2.1) 
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The cell with center at (xi, yi) is denoted by Q2,, and dii is the value of 4 at the 
center. Often, this is called a block-centered or cell-centered grid. Forward and 
backward divided differences in x- and y-direction are defined by 

(2.2) 

and similarly for A, and V,. 
For completeness we briefly review the elementary aspects of finite volume 

discretization of (1.1) with discontinuous coefficient a. Equation (1.1) is integrated 
over the finite volume 52,. With the Gauss divergence theorem this results in 

(2.3) 

with the summation convention for the index a. 
Let S; be the side of Q, with outward normal in the x,-direction (x1 = x, x2 = y). 

Equation (2.3) can be rewritten as 

with the flux Fq detined as OL 

-V,F;= hfi,, (2.4) 

F’i= a s ad,, dr. (2.5) 
s”, 

We discuss the approximation of Ff; FY is treated similarly. Ft is approximated as 

Ff 1: hau 2 (xi + h/2, yi), (2.6) 

where aij is the average of a over Q,. The approximation 

(2.7) 

is out of the question, since aii may differ strongly between adjacent cells, so that 
ad/ax may have large jumps at cell boundaries. A correct approximation is 
obtained as follows. Point of departure is that $ and a &$/ax are continuous. 
Denote for brevity &xii + h/2, yii) by 4*. Then we approximate FT by 

Ff N 2aij(qS* - dg) = 2a,+ I,i(di+ I,j- I$*). (2.8) 

Elimination of b* from (2.8) results in 

(2.9) 
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with 

W~=2U,iUi+,,j/(a,i*Ui+l,j). (2. IO) 

Similarly, we obtain 

Ff N hw$ Aytjij (2.11) 

with 

WfJ = 2U,iUi, j+ J(aij + ai,j+ 1). (2.12) 

Substitution of (2.9) and (2.11) in (2.4) results in 

-(VXwx A,+V,wy A&%=$ (2.13) 

It is easy to see that wX and wY satisfy 

inf(a) < wX, wy d sup(a). (2.14) 

The Dirichlet boundary condition is implemented as follows. Consider the side 
x = 0. There Fp’ is approximated by (cf. (2.8)): 

FPj N 2a?,(cjlj- gj). (2.1s) 

A Neumann boundary condition gives Fy directly. 

3. PROLONGATION AND RESTRICTION 

The reader is assumed to be familiar with multigrid methods. For an intro- 
duction, see, for example, Hackbusch and Trottenberg [4], Hackbusch [5], or 
McCormick [S]. 

Coarse grids are constructed cell-wise. That is, coarser grids O,,, Qdh, .~. are 
obtained by successively doubling h in (2.1). Hence, each coarse cell is the union of 
four finer cells. The cell centers of a coarse grid do not belong to the next finer grid. 
This is different from point-wise coarsening, where coarse grids are constructed by 
deleting grid points, so that coarse grid points always belong to a liner grid. 

The grid with mesh size h is denoted by 52,, and ds,: Q,, -+ R is the corresponding 
set of grid functions. Elements of Gh are denoted by @, $“. 

In this section the choice of prolongation and restriction operators 

ph:@2h-,@Dh, R2h 1 @tl -+ @2h 

is discussed. One possibility is 

(Phd2h)*i,2j= Cphb2”)2i- 1,2j= (Ph42h)2i,2j- 1 

= (Phd2”)2ip l,*j- 1 = $r. 83.1) 
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A possibility for R,, is 

R,,=P,*, 

with superscript * denoting the adjoint. With the inner product 

we find that the stencil of RZh defined by (3.1), (3.2) is 

(3.2) 

(3.3) 

(3.4) 

where [ -1 denotes the stencil of the corresponding operator. 
P, and R& interpolate polynomials exactly of degree at most 0. Their order mp, 

mR is defined to be the maximum degree of exactly interpolated polynomials plus 1; 
hence for (3.1), (3.2) we have 

mp=mR=l. (3.5) 

We must have 

m,+m,~2m (3.6) 

(Brandt [Z], Hackbusch [S]), with 2m the order of the differential equation to be 
solved. Hence, (3.1), (3.2) are not right for (1.1). See Wesseling [lo] for what 
happens when one does use (3.1), (3.2) for (1.1). 

A restriction with mR = 2 is given by 

(3.7) 

At the boundaries, (3.7) has to be modified. For a Dirichlet boundary condition we 
obtain at the boundary y = 1 or at the boundary x = 0, 

(3.8) 

and similarly at other parts of the boundary. This restriction is obtained as adjoint 
of linear interpolation. For simplicity, (3.8) is also used in the case of Neumann 
boundary conditions. 
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Let the system of equations to be solved on Q, be denoted as 

Ahqih=fh. (3.9) 

On i-2 2h, A, is approximated by 

Azh = &dhPh. 
Let Ah have a 7-point stencil: 

* * 0 

[Ah]= * * * 

0 * * 

(3.11) 

Then it is found that with P,, Rzh given by (3.1) and (3.7~(3.8), Azh as given by 
(3.10) also has a 7-point stencil. This is also true if Pz is given by (3.7)-( 3.8) and 
RZh by (3.4). However, if both Pt and RZh are given by (3.7t(3.8) then the stencil 
of A,, is larger than that of A,. Therefore it was decided to choose Rzh according to 
(3.7)-(3.8) and P, according to (3.1). Note that we have m,+m, = 3, whit 
suffices. 

It is easy to obtain A,, explicitly from (3.10), with the choice just made for Ph 
and Rzh. It is found that AZh corresponds to the following discrete equation on the 
coarse grid (cf. Eq. (2.13)), 

-(V,w”a,+v,lPa,)~=f: (3.12) 

where quantities belonging to the coarse grid are denoted by an overbar. We &n 
the simple relation for W”, WY, 

(3.13) 
Hence, in this case construction of coarse grid matrices by (3.10) (~al~rk~~ 
approximation) is extremely cheap. Note that A,, is symmetric. 

4. NUMERICAL EXPERIMENTS 

The multigrid schedule used is the W-cycle with one post-smoothing iteration. 
The smoothing method is the IL&method described in Wesseling (1982, 1987). 

The test problems are the interface problems sketched in Fig. 4.1. In the first 
problem we have two concentric squares, in the second problem the inner square is 
rotated over 45”. The sides of the outer square have length 1, of the inner cell rah in 
problem 1, and nh/.,,/:! in problem 2. In the inner square we have a = a, = 
0.333 * 105, in the outer square a = a2 = 2. Problem 3 was suggested by Achi Bra 
The cells with centers at x = (n - 1/2)h constitute a vertical isolating strip of w 
h, where the value of the diffusion coefficients is a = a, = lo-lo; outside the strip, 
a=a,=2. 
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FIG. 4.1. Geometry of test problems. 

We solve (1.1) with f = xy, g = x2 + y2, starting iterand zero. Twelve iterations 
were carried out. The average reduction factor p is defined as 

P = 1 llf71111~“ll Y’” (4.1) 

with 11. /I the /,-norm, Y the residue Y = bh - A,cjh on the finest grid (with A,@ = bh 
the system top be solved), r* the initial residue, r”’ the final residue, and m the 
number of multigrid iterations carried out. Table I gives p for a number of cases. 
Where 12 # 0 we have taken the worst case for all 0 < iz < h ~ ‘. The last column is for 
Neumann boundary conditions along x = 0 and y = 0. 

It is clear that multigrid works efficiently. For problems 1 and 2, p does not 
increase with h. With IZ ~0, p is larger than with n =0 (Poisson equation). We 
think this is due to the fact that the equations in the inner square are almost 
uncoupled from those outside for a, + a2, so that we almost have a discretized pure 
Neumann problem for the interior square, which is singular. This hypothesis is 
confirmed by the fact that with a1 and a2 interchanged (a, <<a,), p is found to be 
about the same size for all n, including 0. For problem 3, p increases with h for 
certain locations of the isolating strip. This is thought to be due to the fact that, as 
suggested by Achi Brandt, according to Eq. (3.13) the isolation (small value of w) 
between the regions separated by the vertical strip may disappear after two 
coarsenings: Nevertheless, convergence is still rapid. Inspection of the last column 
of Table I shows that the introduction of Neumann boundary conditions has little 
influence. Therefore it does not seem worthwhile to abandon (3.8) along non- 
Dirichlet boundaries. 

With another smoothing method, namely point Gauss-Seidel, similar results 
were obtained. 

TABLE I 

n, p for Problems 1, 2, and 3 

Problem\k’ 8 16 32 64 64 

1 0 0.059 0 0.011 0 0.085 0 0.091 0 0.090 
1 6 0.312 10 0.362 26 0.304 58 0.290 58 0.298 
2 6 0.245 10 0.300 26 0.273 58 0.237 58 0.220 
3 1 0.061 10 0.074 18 0.147 34 0.299 34 0.372 
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5. DISCUSSION 

Multigrid methods that work for elliptic equations with discontinuous coefficients 
(interface problems) have been described by Alcouffe et LIZ. [l J, Dendy [3], Kettler 
and Meijerink [6-J, Kettler [7], and in the present work. The present method 
differs from the earlier ones in that grid coarsening is done cell-wise rather t 
point-wise, and prolongation and restriction are not dependent on the e 
As a result, the present method is simpler and requires less storage. 

Comparing the rates of convergence that are reported one gets the impression 
that the present method is at least as efficient as the earlier ones. 

Thanks to the simplicity of the present method, it can be jusified theoretically. 
The theory will be given elsewhere. Why does the present method work? An impor- 
tant factor probably is that (3.12) is quite similar to (2.13). This suggests that the 
present prolongation and restriction result in accurate coarse grid approximatio 
Also, the similarity between (3.12) and (2.13) simplities,the theory. 

Extension to 3D seems easier than for the older methods. The same considera- 
tions as for the older methods are expected to apply to the extension to systems of 
differential equations. 
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